Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2087655

RESUMEN

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Asunto(s)
COVID-19 , Vacunas Virales , Ratas , Ratones , Humanos , Animales , SARS-CoV-2 , Vacunas contra la COVID-19 , Anticuerpos ampliamente neutralizantes , Pandemias/prevención & control , COVID-19/prevención & control , Ratas Sprague-Dawley , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética , Ratones Endogámicos BALB C , Macaca mulatta , Anticuerpos Antivirales
2.
Lancet Infect Dis ; 22(4): 473-482, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1757985

RESUMEN

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.


Asunto(s)
COVID-19 , SARS-CoV-2 , Formación de Anticuerpos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Casos y Controles , ChAdOx1 nCoV-19 , Humanos , Vacunación
3.
Biosci Rep ; 41(10)2021 10 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1510636

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Biología Computacional/métodos , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/inmunología , COVID-19/inmunología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , SARS-CoV-2/inmunología , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
4.
Biosci Rep ; 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1450299

RESUMEN

COVID-19 pandemic caused by SARS-CoV-2 virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compound/s that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (Angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to downregulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused downregulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus.  However, cell based anti-virus drug screening assay showed 30~60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggests that these two closely related compounds possess multimodal anti-COVID 19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.

5.
Int J Biol Macromol ; 184: 297-312, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1265684

RESUMEN

COVID-19 caused by SARS-CoV-2 corona virus has become a global pandemic. In the absence of drugs and vaccine, and premises of time, efforts and cost required for their development, natural resources such as herbs are anticipated to provide some help and may also offer a promising resource for drug development. Here, we have investigated the therapeutic prospective of Ashwagandha for the COVID-19 pandemic. Nine withanolides were tested in silico for their potential to target and inhibit (i) cell surface receptor protein (TMPRSS2) that is required for entry of virus to host cells and (ii) viral protein (the main protease Mpro) that is essential for virus replication. We report that the withanolides possess capacity to inhibit the activity of TMPRSS2 and Mpro. Furthermore, withanolide-treated cells showed downregulation of TMPRSS2 expression and inhibition of SARS-CoV-2 replication in vitro, suggesting that Ashwagandha may provide a useful resource for COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Extractos Vegetales/química , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Witanólidos/farmacología , Células A549 , Antivirales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Proteínas de la Matriz Viral/química , Internalización del Virus/efectos de los fármacos , Witanólidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA